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1 Introduction to Calculus of Variations

1.1 Motivation and general setup

Now, we will begin the final part of this course, where we will study nonlinear PDEs.
Calculus of variations gives us a lot of extra structure which is helpful in studying nonlinear
PDEs. The reference is sections 8.1, 8.6 in Evans’ book, but we will give some more focus
on the formalism than Evans.

In the calculus of variations, we are looking for the critical points of a functional F :
X → R; these are necessary to find extrema and is motivated by optimization problems.
We will give some more motivations later. For us X will be a set of functions, which
differentiates this from an ordinary calculus problem.

Example 1.1 (Energy minimizing curves). Given a curve γ : [0, 1]→ Rd, we can associate
the energy

E[γ] =

∫ 1

0
|γ̇(t)|2 dt.

What are the minimizers of E[γ]?

To solve problems like this, we need to generalize what we do in usual calculus: We
want to find a way to say something like “∇E[γ] = 0.” The idea is to think of directional
derivatives instead. We can equivalently find a γ such that

d

ds
E[γ + sv]|s=0 = 0

for all v : [0, 1]→ Rd in a reasonable class.

1



1.2 Examples of the Euler-Lagrange equation

For simplicity, we assume γ ∈ C∞([0, 1];Rd) and v ∈ C∞
c ((0, 1);Rd) =: A .

We can write out

d

ds
E[γ + sv]|s=0 =

d

ds

∫ 1

0

∣∣∣∣ ddt(γ(t) + sv(t))

∣∣∣∣2 dt∣∣∣∣
s=0

= 2

∫ 1

0

d

dt
(γ + sv)

d

dt
v

∣∣∣∣
s=0

dt

= 2

∫ 1

0
γ̇
d

dt
v dt

= −2

∫ 1

0
γ̈v dt.

So we see that

0 =
d

ds
E[γ + sv]|s=0 ∀v ∈ A ⇐⇒ 0 =

∫ 1

0
γ̈v dt ∀v ∈ A

⇐⇒ γ̈ = 0 on (0, 1).

Our critical point condition gave us a differential equation. This is called the Euler-
Lagrange equation. It tells us that energy minimizing curves are straight lines (geodesics).
If we take F [u], where u : U → RN and U ⊆ Rn with n ≥ 2, we will in general get a PDE
for our critical points. There are two ways to generalize this example:

1. If we look for the minimum of F we need some extra condition, such as the idea
of convexity of F . This leads to elliptic PDEs. Chapter 8 of Evans’ book focuses
mostly on this approach.
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2. We can interpret this as a Lagrangian mechanics problem. This is when there is a
natural time variable in the problem. Here, we do not worry about minimizing F ;
we just look for critical points. In this setting, critical points give an equation (like
γ̈ = 0) which tells us locally how the curve will evolve given initial conditions.

This is known as the principle of stationary action, in which case, we call F the
action.

Here are some examples of Euler-Lagrange equations corresponding to various calculus
of variation problems.

Example 1.2 (Dirichlet’s principle). Let u : U → R, where U is an open, bounded C∞

domain contained in Rd. We take u ∈ C∞(U) and take our functional to be

F [u] =
1

2

∫
U
|Du|2 dx.

(Compare this with our equation for geodesics). The critical points satisfy the PDE −∆u =
0.

Example 1.3 (Action principle for the wave equation). Let u : O → R, where O is an
open subset of R1+d

t,x . We take u ∈ C∞(U) and

S[u] =

∫
O

(∂tu)2 − |Du|2 dt dx.

The critical points satisfy the wave equation in O.

1.3 First variation (the Euler-Lagrange equation)

From now on, we restrict our attention to functionals of the form

F [u] =

∫
U
L(Du(x), u(x), x) dx,
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where L : (p, z, x) : Rd×R×U → R is called the Lagrangian density. For our notation,
we will use brackets when we are talking about u as a function as a whole and parentheses
when we are talking about values of u.

To think of first variations, we think of directional derivatives. Take u ∈ A and
variations v ∈ A0. Then we will try to form

d

ds
F [u+ sv]|s=0.

Remark 1.1. When A0 = A , people in functional analysis call this the Gâteaux deriva-
tive.

In our case, for simplicity, eww assume A = C∞(U) and A0 = C∞
c (U). The assumption

on A0 is okay, and the assumption on A is restrictive but easily removable. We get

DvF [u] =
d

ds
F [u+ sv]

∣∣∣∣
s=0

=
d

ds

∫
U
L(D(u+ sv), u+ sv, x) dx

∣∣∣∣
s=0

=

∫
U

d

ds
L(D(u+ sv), u+ sv, x)|s=0 dx

=

∫
U
∂jv

(
∂

∂pj
L

)
(Du, u, x) + v(∂zL)(Du, u, x) dx

=

∫
U
v

(
−∂j

((
∂

∂pj
L

)
(Du, u, x)

)
+ (∂zL)(Du, u, x)

)
dx.

In particular, if DvF [u] = 0 for all v ∈ A0,(
−∂j

(
∂

∂pj
L

)
+ ∂zL

)
(Du, u, x) = 0

in U . This is the Euler-Lagrange equation.

Example 1.4 (Dirichlet’s principle). In this example, L = 1
2 |p|

2, so the Euler-Lagrange
equation is

0 = ∂

(
∂

∂pj

1

2
|p|2
)

︸ ︷︷ ︸
pj

|p=Du ,

which gives us −∆u = 0.

Example 1.5 (Action principle for the wave equation). In this example, L = 1
2p

2
0− 1

2 |px|
2.

The Euler-Lagrange equation is

0 = −∂t
(

∂

∂p0
L

)
︸ ︷︷ ︸

p0

|pt,x=Dt,xu −
d∑
j=1

∂j

(
∂

∂pj
L

) ∣∣∣∣
pt,x=Dt,xu

,
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so we get −∂2t u+ ∆u = 0.

Remark 1.2. In calculus,
DvF [u] = 〈v,∇F [u]〉.

With a choice of inner product, we can define the gradient of F . In our case, we have
computed that

DvF [u] =

∫
U
v(· · · ) dx.

With respect to the L2 inner product 〈·, ·〉 =
∫
U uv dx, we have

DvF [u] = 〈v,LHS of E-L equation〉.

Because of this, the left hand side of the Euler-Lagrange equation is sometimes called the
L2-gradient of F , ∇F . Note that ∇F is now an operator u 7→ ∇F [u].

1.4 Second order variation

Again, start from directional derivatives. In calculus, the proper way to think about second
order directional derivatives is the following:

Dv,wF [u] =
d

ds

d

dt
F [u+ sv + tw]|s=0,t=0.

In our case, we define second order directional derivatives of F by this formula. There are
two interpretations of the second order variation:

1. In the context of minimization, we can think of this as the Hessian of F at u contracted
with two direction vectors v, w. We can then try to come up with a second derivative
test to see if a critical point is a maximizer or minimizer.

2. We can think of this as a linearized operator around a critical point. Often, we are
not just interested in a single solution but also nearby solutions; this allows us to
think about variation through critical points.
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In geometry, this is the notion of Jacobi shifts. We want u(x;λ) such thst u(x; 0) =
u(x) is a given critical point and u(x;λ) are all critical points. We can write this as

∇F [u(x, λ)] = 0,

or
DvF [u(x;λ)] = 0.

We can then differentiate this in λ and get that

d

dλ
∇F [u(x, λ)]

∣∣∣∣
λ=0

= 0,

or
d

dλ
DvF [u(x;λ)]

∣∣∣∣
λ

= 0, (v ∈ Av),

where

u(x;λ) = u(x) + λ
∂

∂λ
u

∣∣∣∣
λ=0

= u(x) + δu.

We can write
DδuDvF [u] = 0,

which is called the linearization of the Euler-Lagrange equation around U for δu.

1.5 Nöther’s principle

This principle can be summarized with a slogan: “(continuous) symmetries of the action
correspond to conservation laws for solutions.” In nonlinear PDEs, conservation laws are
very useful but hard to come by. Oftentimes, you have no idea what the solution to an
equation is but you know that it’s invariant under, say, time translations. This gives you
a conserved quantity we can study to understand the solutions to an equation.

Introduce a parameter τ and think about a 1-parameter family of variations.

Definition 1.1. x 7→ X(x, τ) si called the domain variation, and u 7→ u(x, τ) is called
the function variation.

Example 1.6. We can, for example, take X(x, τ) = x− τe1 and u(x, τ) = u(x− τe1).

Definition 1.2. F is invariant under X(·, τ) and a(·, τ) if

U(τ) = X(U, τ), u(x, 0) = u(x), X(x, 0) = x,∫
U
L(Du(x, τ), u(x, τ), x) dx =

∫
U(τ)

L(Du, u, x) dx.
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Theorem 1.1 (Nöther’s principle). In this case,

∂j(m∂pjL− Lvj) = m ·
(
∂j

∂

∂pj
L− ∂zL

) ∣∣∣∣
p=Du,z=u

,

where m(x) = ∂
∂τ u(x, τ)|τ=0 and vj(x) = ∂

∂τX
j(x, τ).

The key idea is that ∂j
∂
∂pj

L− ∂zL|p=Du,z=u is ∇F . We will discuss this in more detail
next time.
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